martes, 28 de mayo de 2013

ECUACION DE SCHODINGER Y LA ARQUITECTURA ELECTRONICA


ECUACIÓN DE SCHRODIGNER:
La ecuación de Schrödinger, desarrollada por el físico austriaco Erwin Schrödinger en 1925, describe la evolución temporal de una partícula masiva no relativista. Es de importancia central en la teoría de la mecánica cuántica, donde representa para las partículas microscópicas un papel análogo a la segunda ley de Newton en la mecánica clásica. Las partículas microscópicas incluyen a las partículas elementales, tales como electrones, así como sistemas de partículas, tales como núcleos atómicos.

2 PARÁMETROS

Las diferentes versiones de la ecuación de Schrödinger contienen los siguientes parámetros:
Constante de Plank,  : es la energía por unidad de frecuencia de cada cuanto de luz. Entra en la ecuación de Schrödinger para satisfacer las relaciones de conmutación canónicas,   .
Constante imaginaria : indica el carácter complejo de las funciones de onda. Representa una cantidad compleja tal que   .
Energía propia  : valor propio del hamiloniano asociado a su n-ésimo estado propio.

3 CONDICIONES DE VALIDEZ:

La ecuación de Schrödinger es útil en aquellas situaciones en que la acción del sistema (la integral temporal de la función lagrangiana) es muy pequeña, comparable al valor de la constante de Plank.
Por otra parte, la ecuación de Schrödinger deja de ser válida en las condiciones siguientes:

Cuando la energía cinética,   es comparable a la energía en reposo, en cuyo caso son importantes las correcciones relativistas.
Cuando existe creación y destrucción de partículas, en cuyo caso deben utilizarse los métodos de la teoría cuántica de campos (que también pueden incorporar la relatividad).
La descomposición (5) y, en general, el formulismo de la ecuación independiente del tiempo tiene sentido tan solo cuando el propio hamiltoniano es también independiente del tiempo.

ARQUITECTURA O CONFIGURACIONES ELECTRONICAS:
Una configuración electrónica es la forma de llenado de los orbitales y suborbitales para completar un átomo. La configuración electrónica se logra en base a ciertas reglas llamadas "Principio de Aufbau" o "Principio de Construcción".
a) Principio de Mínima energía: "Los electrones se ubican primero en los orbitales de más baja energía (más cerca del núcleo) y los de mayor energía se ocupan cuando los primeros estan ocupados"
b) Principio de exclusión de Pauli: "Los orbitales son ocupados por dos electrones como máximo, siempre que presenten espines distintos".
c) Principio de Máxima multiplicidad de Hund: "En orbitales de la misma energía los electrones entran de a uno. Ocupando cada órbita con el mismo spin. Cuando se alcanza el semillenado, recién se produce el apareamiento con los espines opuestos".




Estructura electrónica de los elementos químicos:

H (1) = 1s1

He (2) = 1s2
Li (3) = 1s2 2s1
Be (4) = 1s2 2s2
B (5) = 1s2 2s2 2px1
C (6) = 1s2 2s2 2px1 2py1
N (7) = 1s2 2s2 2px1 2py1 2pz1
O (8) = 1s2 2s2 2px2 2py1 2pz1
F (9) = 1s2 2s2 2px2 2py2 2pz1
Ne (10) = 1s2 2s2 2px2 2py2 2pz2
Na (11) = 1s2 2s2 2px2 2py2 2pz2 3s1
Mg (12) = 1s2 2s2 2px2 2py2 2pz2 3s2
Al (13) = 1s2 2s2 2px2 2py2 2pz2 3s2 3px1
Si (14) = 1s2 2s2 2px2 2py2 2pz2 3s2 3px1 3py1
P (15) = 1s2 2s2 2px2 2py2 2pz2 3s2 3px1 3py1 3pz1
S (16) = 1s2 2s2 2px2 2py2 2pz2 3s2 3px2 3py1 3pz1
Cl (17) = 1s2 2s2 2px2 2py2 2pz2 3s2 3px2 3py2 3pz1
Ar (18) = 1s2 2s2 2px2 2py2 2pz2 3s2 3px2 3py2 3pz2
K (19) = 1s2 2s2 2px2 2py2 2pz2 3s2 3px2 3py2 3pz2 4s1
Ca (20) = 1s2 2s2 2px2 2py2 2pz2 3s2 3px2 3py2 3pz2 4s2
Sc (21) = 1s2 2s2 2px2 2py2 2pz2 3s2 3px2 3py2 3pz2 4s2 3dv1


Hay 4 métodos:

1. Global: en ella se disponen los electrones según la capacidad de nivel y subniveles.
Ejemplo: 1s2 2s2 2p6 3s1

2. Global externa: se indica en un corchete el gas noble anterior anterior al elemento configurado y, posteriormente, los niveles y subniveles que no están incluiudos en ese gas noble y pertenecen al elemento configurado.
Ejemplo: [Ne] 3s1

3. Detallada: se indica la ubicación de los electrones por cada orbital.
Ejemplo: 1s2 2s2 2px2 2py2 2pz2 3s1

4. Diagrama de orbitales: Cada orbital se simboliza por un casillero, utilizando flecha hacia arriba o flecha hacia abajo para representar la disposición del espín de cada electrón.

Ejemplo: (ver en foto superior).



             
         
                     

No hay comentarios:

Publicar un comentario