martes, 28 de mayo de 2013

TEORÍA CUÁNTICA DE PLANCK



TEORÍA CUÁNTICA DE PLANCK

Cuando un cuerpo es calentado emite radiación electromagnética en un amplio rango de frecuencias.
El cuerpo negro (ideal) es aquel que además absorbe toda la radiación que llega a él sin reflejarla, de tal forma que sólo emite la correspondiente a su temperatura.
A fines del siglo XIX fue posible medir la radiación de un cuerpo negro con mucha precisión. La intensidad de esta radiación puede en principio ser calculada utilizando las leyes del electromagnetismo. El problema de principios del siglo XX consistía en que si bien el espectro teórico y los resultados experimentales coincidían para bajas frecuencias (infrarrojo), estos diferían radicalmente a altas frecuencias. Este problema era conocido con el provocativo nombre de “la catástrofe ultravioleta”, ya que la predicción teórica diverge a infinito en ese límite.
Quien logró explicar este fenómeno fue Max Planck, en 1900, que debió para ello sacrificar los conceptos básicos de la concepción ondulatoria de la radiación electromagnética.
Para resolver la catástrofe era necesario aceptar que la radiación no es emitida de manera continua sino en cuantos de energía discreta, a los que llamamos fotones.
La energía de estos fotones es:
E (fotón) = h.ν
ν : Frecuencia de la radiación electromagnética (s-1)
h : constante de Planck
h = 6,62.10-27 erg.s
h = 6,62.10-34 J.s

Cuando la frecuencia de la radiación es baja el efecto de la discretización se vuelve despreciable debido al minúsculo valor de la constante de Planck, y es perfectamente posible pensar al sistema como continuo, tal como lo hace el electromagnetismo
clásico. Sin embargo, a frecuencias altas el efecto se vuelve notable.
En 1905, Einstein utilizaría el concepto de fotón para explicar otro fenómeno problemático en el marco de la física clásica, la generación de una corriente eléctrica al aplicar luz monocromática sobre un circuito formado por chapas metálicas, conocido como el efecto fotoeléctrico. Einstein obtendría tiempo después el Premio Nobel por este importante hallazgo teórico.





MODELO ATÓMICO DE SOMMERFELD:

El Modelo atómico de Sommerfeld es un modelo atómico hecho por el físico alemán Arnold Sommerfeld (1868-1951) que básicamente es una generalización relativista del modelo atómico de Bohr (1913).

INSUFICIENCIAS DEL MODELO DE BOHR:
El modelo atómico de Bohr funcionaba muy bien para el átomo de hidrógeno, sin embargo, en los espectros realizados para átomos de otros elementos se observaba que electrones de un mismo nivel energético tenían distinta energía, mostrando que existía un error en el modelo. Su conclusión fue que dentro de un mismo nivel energético existían subniveles, es decir, energías ligeramente diferentes. Además desde el punto de vista teórico, Sommerfeld había encontrado que en ciertos átomos las velocidades de los electrones alcanzaban una fracción apreciable de la velocidad de la luz. Sommerfeld estudió la cuestión para electrones relativistas.

CARACTERÍSTICAS PRINCIPALES:

En 1916, Sommerfeld perfeccionó el modelo atómico de Bohr intentando paliar los dos principales defectos de éste. Para eso introdujo dos modificaciones básicas: Órbitas casi-elípticas para los electrones y velocidades relativistas. En el modelo de Bohr los electrones sólo giraban en órbitas circulares. La excentricidad de la órbita dio lugar a un nuevo número cuántico: el número cuántico azimutal, que determina la forma de los orbitales, se lo representa con la letra l y toma valores que van desde 0 hasta n-1. Las órbitas con:
l = 0 se denominarían posteriormente orbitales s o sharp
l = 1 se denominarían p o principal.
l = 2 se denominarían d o diffuse.
l = 3 se denominarían f o fundamental.
Para hacer coincidir las frecuencias calculadas con las experimentales, Sommerfeld postuló que el núcleo del átomo no permanece inmóvil, sino que tanto el núcleo como el electrón se mueven alrededor del centro de masas del sistema, que estará situado muy próximo al núcleo al tener este una masa varios miles de veces superior a la masa del electrón.
Para explicar el desdoblamiento de las líneas espectrales, observando al emplear espectroscopios de mejor calidad, Sommerfeld supone que las órbitas del electrón pueden ser circulares y elípticas. Introduce el número cuántico secundario o azimutal, en la actualidad llamado l, que tiene los valores 0, 1, 2,…(n-1), e indica el momento angular del electrón en la órbita en unidades de , determinando los subniveles de energía en cada nivel cuántico y la excentricidad de la órbita.
En 1916, Arnold Sommerfeld, con la ayuda de la relatividad de Albert Einstein, hizo las siguientes modificaciones al modelo de Bohr:
Los electrones se mueven alrededor del núcleo, en órbitas circulares o elípticas.
A partir del segundo nivel energético existen dos o más subniveles en el mismo nivel.
El electrón es una corriente eléctrica minúscula.
En consecuencia el modelo atómico de Sommerfeld es una generalización del modelo atómico de Bohr desde el punto de vista relativista, aunque no pudo demostrar las formas de emisión de las órbitas elípticas, solo descartó su forma circular.
Archivo: Sommerfeld ellipses.svg
MODELO MECÁNICO CUÁNTICO:

Quienes sentaron las bases del nuevo modelo mecánico Cuántico fueron tres científicos:

a) En 1924, Louis de Broglie, postuló que los electrones tenían un comportamiento dual de onda y partícula. Cualquier partícula que tiene masa y que se mueve a cierta velocidad, también se comporta como onda.

b) En 1927, Werner Heisenberg, sugiere que es imposible conocer con exactitud la posición, el momento y la energía de un electrón. A esto se le llama "principio de incertidumbre"

c) En 1927, Erwin Schrödinger, establece una ecuación matemática que al ser resuelta permite obtener una función de onda (psi cuadrado) llamada orbital. Esta describe probabilisticamente el comportamiento de un electrón en el átomo. Esta función es llamada densidad electrónica e indica la probabilidad de encontrar un electrón cerca del núcleo. La probabilidad es mayor mientras más cercana al núcleo y menor si nos alejamos del núcleo. Con esta teoría de Schrödinger queda establecido que los electrones no giran en orbitas alrededor del núcleo como el modelo de Bohr, sino en volumenes alrrededor del núcleo.
 


NUMEROS CUANTICOS:



La distribución de los electrones alrededor del núcleo obedece a una serie de reglas que se traducen en un modelo matemático que reconoce 4 números cuánticos:

1. Número cuántico principal (n): corresponde a los niveles de energía. Estos niveles aumentan de tamaño a medida que nos alejamos del núcleo. Posee valores n=1, 2, 3, 4, 5, 6,...

2. Número cuántico secundario (l): representa la existencia de subniveles de energía dentro de cada nivel. Se calculan considerando l = 0, 1, 2, 3, 4
Así, para n=1...l =0 ( "s" )
para n=2 .........l = 0, 1 ( "s", "p" )
para n=3 .........l = 0, 1, 2 ( "s", "p", "d" )
para n=4 .........l = 0, 1, 2, 3, 4 ("s", "p", "d", "f" )

3. Número magnético (m): representa la orientación de los orbitales y se calcula m=+/- l
si l = 0, m=0 es decir 1 solo tipo de orbital s
si l = 1, m =-1, 0, +1 es decir 3 tipos de suborbitales p (px, py y pz)
si l = 2, m = -2, -1, 0, +1, +2 es decir 5 tipos de suborbitales d (du, dv, dx, dy, dz)
si l = 3, m = -3, -2, -1, 0, +1, +2, +3 es decir 7 tipos de suborbitales f (fs, ft, fu, fv, fx, fy y fz)

4. Número de spin (s): indica la cantidad de electrones presentes en un orbital y el tipo de giro de los electrones, habiendo dos tipos +1/2 y -1/2. En cada tipo de suborbital cabe máximo 2 electrones y estos deben tener spines o girpos opuestos.




1 comentario: